
The Federal Highway Administration (FHWA) is pleased to 
announce the Highway Safety Information Systems (HSIS) 
Excellence in Highway Safety Data Awards Program, a competition 
designed to encourage university students to use HSIS data to 
investigate a topic that advances highway safety and to develop 
a paper to document the original research, as well as introduce 
potential future highway safety professionals to 
good quality safety data, the application of 
appropriate research methods to derive 
recommendations, and the practice of 
using data to make decisions.
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are summarized and synthesized. Finally, the paper is concluded 
by addressing the key findings, discussing the limitations of the 
current study, and providing avenues future research. 

Data
Data used for analysis consisted of heavy-vehicle crashes that 
occurred in Minnesota from 2004 to 2014. Each crash file (accident, 
vehicle, and occupant) were merged. The accident file and vehicle 
file were merged based on the variable “caseno,” then that file was 
merged once more based on the variables “caseno” and “vehno.” The 
final merge was to incorporate data regarding the roadway, and this 
was completed using county IDs and milepost markers (see reference 
13 for a full explanation of how this was done).13 Upon merging all 
files, the final step consisted of filtering the data to represent only the 
drivers of heavy-vehicles by weekday and weekend crashes. 

The Highway Safety Information System (HSIS) data classifies 
injury severity into five distinct categories: (1) K, fatal injury; (2) 
A, incapacitating injury; (3) B, non-incapacitating injury; (4) C, 
evident/possible injury; and, (5) N, no injury. Previous work has 
shown that due to a small number of severe injury crashes (K and 
A), injury severities can be joined to create three severities: (1) 
severe injury (K and A); (2) minor injury (B and C); and, no injury 
(N).11,14 Therefore, the current study utilizes the above-mentioned 
severity groups for analysis.

Several indicator variables were created for each disaggregated 
dataset of weekday crashes and weekend crashes. Of the created 
indicator variables, 24 were found to be significant contributing 
factors for weekday crashes and 17 were found to be significant 
contributing factors for weekend crashes. Summary statistics and 
variable definitions are shown in Table 1 and Table 2.

Given the importance of heavy-vehicles to the economy, and the 
highlighted safety concerns, the study of heavy-vehicle crashes is 
critical to mitigate loss of life and societal costs. With this premise in 
mind, several previous works have addressed heavy-vehicle crashes 
with a specific focus on injury severity.4-11 Although these works have 
disaggregated crash data by rural, urban, time-of-day, age, gender, 
etc., the relationship between crash factors, crash severity, and time 
of the week are not clearly understood. For example, in Minnesota, 
only 9 percent of heavy-vehicle crashes occurred on weekends in 
2015 while greater than 90 percent occurred during weekdays.12 Still, 
considering such statistics, the study of heavy-vehicle injury severity 
factors by time-of-week is scarce.

Taking this into consideration, the present study seeks to 
identify heavy-vehicle driver injury severity contributing factors 
by time-of-week in Minnesota (weekday crashes and weekend 
crashes) through a mixed logit modeling framework that accounts 
for the unobserved factors commonly present in crash data (this is 
typically referred to as unobserved heterogeneity). In addition, a 
parameter transferability test will be conducted to determine if such 
crashes need to be considered independently for safety analyses. 
The parameter transferability test will test the null hypothesis that 
parameter estimates by time-of-week are not statistically different 
(i.e., weekdays and weekends should be modeled holistically). 
Therefore, this work aims to determine if the null hypothesis is 
rejected (i.e., injury severity models by time-of-week need to be 
considered independently) while identifying injury severity contrib-
uting factors by time-of-week.

The remainder of this manuscript is organized as follows: the 
data employed in this paper is discussed, the modeling framework 
is explained in detail, and then the modeling estimation results 

In the United States, heavy-vehicles (a truck with a gross vehicle weight rating of greater 

than 10,000 pounds) moved 73.1 percent of all freight by value, 71.3 percent by weight, 

and 42.0 percent by ton-miles.1 As these values are expected to increase through 2040, 

safety regarding heavy-vehicles will be a concern for transportation engineers, trans-

portation planners, safety agencies, federal agencies, and state agencies.2 For instance, there was 

a 20 percent increase in the number of fatal crashes involving heavy-vehicles from 2009 to 2013, 

from 2009 to 2014 there was a 55 percent increase in the number of injury crashes involving 

heavy-vehicles, and from 2013 to 2014 there was a 31 percent increase in the number of no injury 

(property-damage-only) crashes involving heavy-vehicles.3 
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Table 2. Descriptive Statistics and Variable Definitions for Weekend 
Crashes

Variable Mean
Standard 
Deviation

No Injury

Accident Type (1 if Overturn/Rollover, 0 Otherwise) 0.07 0.25

Location  
(1 if Four-Legged Intersection, 0 Otherwise)

0.18 0.38

Lighting (1 if Daylight, 0 Otherwise) 0.68 0.47

Weather (1 if Snow, 0 Otherwise) 0.14 0.35

Minor Injury

Posted Speed Limit (1 if 70 mi/hr, 0 Otherwise) 0.16 0.37

Accident Type  
(1 if Collision With Parked Vehicle, 0 Otherwise)

0.09 0.29

Location (1 if Intersection-Related, 0 Otherwise) 0.06 0.24

Surface Condition (1 if Dry, 0 Otherwise) 0.52 0.50

Heavy Vehicle Type  
(1 if Truck-Tractor With Semitrailer, 0 Otherwise)

0.48 0.50

Severe Injury

Posted Speed Limit (1 if 55 mi/hr, 0 Otherwise) 0.25 0.43

Vehicles Involved  
(1 if Greater Than 2 Vehicles, 0 Otherwise)

0.08 0.27

Accident Type  
(1 if Collision With a Vehicle in Transport, 0 Otherwise)

0.62 0.48

Traffic Control Device  
(1 if Traffic Signal, 0 Otherwise)

0.15 0.36

Lighting  
(1 if Dark With Street Lights On, 0 Otherwise)

0.16 0.36

Weather (1 if Clear, 0 Otherwise) 0.50 0.50

Surface Condition (1 if Wet, 0 Otherwise) 0.11 0.31

Restraint Used  
(1 if Lap and Shoulder Belt, 0 Otherwise)

0.80 0.40

Modeling Framework
Mixed Logit
Among the popular methods in modeling crash injury severity, 
unordered (multinomial logit, nested logit, or mixed logit) and 
ordered (ordered logit or probit) discrete outcome models are the 
most frequently used methods.14 Both methods have their benefits 
and limitations, therefore the employment of the methods is 
contingent on the availability and characteristics of the crash data.15 
The mixed logit method has been widely utilized and has been 
shown to be the preferred method for injury severity analyses.14–

19,20,21 Specifically, the mixed logit model can accommodate 
individual unobserved heterogeneity by allowing parameters to 

Table 1. Descriptive Statistics and Variable Definitions for Weekday 
Crashes

Variable Mean Standard 
Deviation

No Injury

Time of Day  
(1 if Between 10:00 a.m. and 4:00 p.m., 0 Otherwise)

0.46 0.50

Location  
(1 if Four-Legged Intersection, 0 Otherwise)

0.22 0.41

Traffic Control Device  
(1 if Traffic Signal, 0 Otherwise)

0.20 0.40

Surface Condition (1 if Ice, 0 Otherwise) 0.14 0.35

Age (1 if 31 to 40 Years, 0 Otherwise) 0.21 0.40

Contributing Factor  
(1 if Failure to Yield Right-of-Way, 0 Otherwise)

0.05 0.22

Minor Injury

Contributing Factor  
(1 if Illegal or Unsafe Speed, 0 Otherwise)

0.05 0.21

Heavy Vehicle Type  
(1 if Truck-Tractor With Semitrailer, 0 Otherwise)

0.50 0.50

Age (1 if 21 to 30 Years, 0 Otherwise) 0.16 0.37

Surface Condition (1 if Snow, 0 Otherwise) 0.08 0.27

Lighting (1 if Daylight, 0 Otherwise) 0.81 0.39

Posted Speed Limit (1 if 60 mi/hr, 0 Otherwise) 0.10 0.31

Severe Injury

Posted Speed Limit (1 if 65 mi/hr, 0 Otherwise) 0.07 0.26

Vehicles Involved  
(1 if Greater Than 2 Vehicles, 0 Otherwise)

0.08 0.28

Time of Day  
(1 if Between 5:00 a.m. and 9:59 a.m., 0 Otherwise)

0.29 0.45

Accident Type  
(1 if Collision With Parked Vehicle, 0 Otherwise)

0.05 0.22

Traffic Control Device (1 if Stop Sign, 0 Otherwise) 0.12 0.33

Lighting  
(1 if Dark and No Street Lights, 0 Otherwise)

0.06 0.23

Surface Condition (1 if Dry, 0 Otherwise) 0.64 0.48

Road Characteristic  
(1 if Straight and Level, 0 Otherwise)

0.71 0.46

Gender (1 if Male, 0 Otherwise) 0.94 0.23

Age (1 if Greater Than 60 Years, 0 Otherwise) 0.13 0.34

Heavy Vehicle Type  
(1 if 2-Axle, 6-Tire Truck, 0 Otherwise)

0.21 0.41

Contributing Factor  
(1 if Improper or Unsafe Lane Use, 0 Otherwise)

0.05 0.22
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cally, a marginal effect for Xnk(i) is the difference in probabilities when 
Xnk(i) changes from zero to one while all other Xnk(i) remain constant 26:

MPn(i) = Pn(i) [Xnk(i) = 1] – Pn(i) [Xnk(i) = 0] (4)

   

Xnk(i)

 
Significance and Parameter Transferability
A log-likelihood ratio test is conducted to evaluate the significance 
of the log-likelihood values. In this case, the log-likelihood ratio 
test determines if the mixed logit model log-likelihood (model with 
estimated random parameters) is of more statistical significance 
than the model with fixed parameters 23:

x2 = – 2 [LL(βFixed) – LL(βRandom) ] (5) 

where LL(βFixed) is the log-likelihood at convergence of the 
model with fixed parameters; LL(βRandom) is the log-likelihood at 
convergence of the model with random parameters; and, x2 is a 
chi-square distributed statistic with degrees of freedom equal to the 
number of estimated random parameters.

In terms of parameter transferability, a more complex log-likeli-
hood ratio test is conducted 23:

x2 = – 2 [LL(βMX1MX2) – LL(βMX1) ] (6) 

where LL(βMX1) is the log-likelihood at convergence of model 
MX1 and LL(βMX1MX2) is the log-likelihood at convergence of model 
MX1 using model MX2 data. That is to say, beta (β) estimates and 
constant estimates are provided for the best fit mixed logit model 
for weekday crashes, this is model MX1. Then, the beta (β) values 
from MX1 are fixed based on the their estimated values and the 
constants from  are given start values based on their estimated 
values. Now, the model for weekday crashes is fit using the data 
from weekend crashes, this is model MX2 with corresponding 
log-likelihood LL(βMX1MX2). The degrees of freedom for x2 is equal to 
the number of estimated parameters in MX2. 

Model Estimation Results
Using Eq. (5), it was determined that the log-likelihood values of 
the models with random parameters are of more significance than 
the models with fixed parameters. Specifically, with a chi-square 
statistic of 32.77 and 4 degrees of freedom, the log-likelihood 
value for the weekday injury severity model is of more significance 
with well over 99 percent confidence. Likewise, with a chi-square 
statistic of 7.87 and 2 degrees of freedom, the log-likelihood value 
for weekend crashes is of more significance with over 98 percent 
confidence. For best fit model specifications and marginal effects 
of the weekday and weekend crash models, see Table 3 and Table 
4. To ease the discussion, the weekday and weekend injury severity 

vary across observations, which results in more reliable parameter 
estimates and corresponding inferences.14,22,23 Therefore, the mixed 
logit modeling framework is utilized for the current study.

The modeling framework begins with a linear-in-parameters 
function, one for each injury severity considered 23:

Sin = βi Xin + εin (1) 

where Sin is injury severity i (no injury, minor injury, and 
severe injury) for heavy-vehicle crash n; βi is a vector of estimable 
parameters; Xin is a vector of covariates (e.g., crash, driver, vehicle, 
and roadway characteristics) used to determine injury severity i for 
heavy-vehicle crash n; and, εin is a disturbance term that attempts to 
capture the unobserved factors in the crash data. Taking Eq. (1), the 
standard multinomial logit formulation is represented as 23,24:

Pn(i)=   e
[βiXin] 

(2)
             Σ I e(βiXin)

where Pn(i) is the outcome probability of heavy-vehicle crash n 
resulting in injury severity i and all other terms have been defined 
previously. Referring to Eq. (1), εin is unable to capture all of the 
unobserved factors. For instance, crash data is often missing every 
variable that contributes to an injury severity (this is typically a 
result of specific data not being on data collection forms used by 
police or for self-reporting) and can have variation within existing 
variables. To illustrate, driver physiology is likely to effect severity 
outcomes, yet is not represented in age or gender variables. Further, 
seatbelts save lives, but can cause injuries while doing so (see 25 for 
a full discussion of unobserved heterogeneity and its importance 
in transportation safety analyses). Therefore, to account for these 
unobserved factors, the standard multinomial logit is extended to a 
mixed logit form (a model using a mixing distribution) 23:

Pn(i | ϕ) = ∫x 
   e

[βiXin]      
f (β | ϕ) dβ

 
(3)

                        
Σ I e(βiXin)

where Pn(i | ϕ) is the weighted outcome probability of heavy-vehicle 
crash n resulting in injury severity i with the weight being determined 
by f (β | ϕ). f (β | ϕ) is the density function of β with distributional 
parameter ϕ, where the distribution of β is defined by the analyst. 
The distribution of β is generally specified to be normal, but several 
distributions are tested for statistical significance (e.g., log-normal, 
uniform, etc.). In particular, the density function f (β | ϕ) is what 
allows parameters to vary across observations—β can now account for 
observation-specific variations in Pn(i) based on the effect of X.23

Marginal effects are now computed to determine the effect of 
explanatory variable X on the outcome probability Pn(i) of injury 
severity i. For this work, this represents a one-unit change in Xnk(i) on 
the probability for crash n to result in injury severity i. More specifi-
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Table 3. Best Fit Mixed Logit Estimations for Weekday Crashes

Variable Coefficient t-statistic Marginal Effects

No Injury Minor Injury Severe Injury

No Injury

Constant 5.09 13.09

Time of Day (1 if Between 10:00 a.m. and 4:00 p.m., 0 Otherwise) -0.11 -1.98 -0.0063 0.005 0.0013

Location (1 if Four-Legged Intersection, 0 Otherwise) -0.47 -6.03 -0.0138 0.0110 0.0028

Traffic Control Device (1 if Traffic Signal, 0 Otherwise) 0.45 5.47 0.0105 -0.0088 -0.0017

Surface Condition (1 if Ice, 0 Otherwise) 0.48 5.84 0.0071 -0.0063 -0.0008

Age (1 if 31 to 40 Years, 0 Otherwise) -0.08 -1.31 -0.002 0.0016 0.0003

Contributing Factor (1 if Failure to Yield Right-of-Way, 0 Otherwise) -0.52 -5.27 -0.0039 0.0030 0.0009

Minor Injury*

Constant 3.90 9.96

Contributing Factor (1 if Illegal or Unsafe Speed, 0 Otherwise) 0.67 4.88 -0.2023 0.1955 0.0068

Heavy Vehicle Type (1 if Truck-Tractor With Semitrailer, 0 Otherwise) -1.33 -2.50 -0.0212 0.0221 -0.0009

  (Standard Deviation of Normally Distributed Parameter) (2.96) (3.59)

Age (1 if 21 to 30 Years, 0 Otherwise) 0.24 3.18 -0.0042 0.0044 -0.0001

Surface Condition (1 if Snow, 0 Otherwise) -0.66 -5.66 0.0045 -0.0046 0.0001

Lighting (1 if Daylight, 0 Otherwise) -0.71 -3.02 -0.0055 0.0055 -0.0001

  (Standard Deviation of Normally Distributed Parameter) (1.62) (3.72)

Posted Speed Limit (1 if 60 mi/hr, 0 Otherwise) 0.20 2.17 -0.0021 0.0022 -0.0001

Severe Injury*

Posted Speed Limit (1 if 65 mi/hr, 0 Otherwise) 0.50 3.29 -0.0011 -0.0002 0.0013

Vehicles Involved (1 if Greater Than 2 Vehicles, 0 Otherwise) 0.83 6.18 -0.0027 -0.0005 0.0032

Time of Day (1 if Between 5:00 a.m. and 9:59 a.m., 0 Otherwise) -0.31 -2.70 0.0015 0.0002 -0.0018

Accident Type (1 if Collision With Parked Vehicle, 0 Otherwise) -1.63 -3.64 0.0003 0.0001 -0.0004

Traffic Control Device (1 if Stop Sign, 0 Otherwise) 0.29 2.39 -0.0012 -0.0002 0.0014

Lighting (1 if Dark and No Street Lights, 0 Otherwise) -5.23 -1.26 -0.0026 -0.0008 0.0034

  (Standard Deviation of Normally Distributed Parameter) (5.60) (2.01)

Surface Condition (1 if Dry, 0 Otherwise) 0.51 4.62 -0.0084 -0.0014 0.0099

Road Characteristic (1 if Straight and Level, 0 Otherwise) -0.26 -2.70 0.0039 0.0006 -0.0045

Gender (1 if Male, 0 Otherwise) 1.53 4.15 -0.0328 -0.0055 0.0383

Age (1 if Greater Than 60 Years, 0 Otherwise) -0.11 -0.16 -0.0039 -0.0007 0.0045

 ( Standard Deviation of Normally Distributed Parameter) (1.30) (1.89)

Heavy Vehicle Type (1 if 2-Axle, 6-Tire Truck, 0 Otherwise) -0.40 -3.26 0.0013 0.0003 -0.0016

Contributing Factor (1 if Improper or Unsafe Lane Use, 0 Otherwise) -1.71 -4.12 0.0004 0.0001 -0.0005

Model Statistics

Number of Observations 20,777

Restricted Log-Likelihood -22,825.87

Log-Likelihood at Convergence -13,176.79

McFadden Pseudo R2 0.42
*Minor Injury (non-incapacitating injuries and possible/event injuries); Severe Injury (incapacitating injuries and fatalities)
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found to be statistically significant. The first random parameter 
was the estimated parameter for truck-tractors with a semitrailer 
in the minor injury severity function. With a mean of -1.33 and 
standard deviation of 2.96, the normal distribution curve indicates 
that for 32.7 percent of heavy-vehicles the estimated parameter 
mean is greater than zero and less than zero for 67.3 percent. In 
other words, 32.7 percent of truck-tractors with a semitrailer are 
more likely to sustain a minor injury and 67.3 percent are less 
likely. The non-homogenous nature may be attributed to the safety 
devices in the cabin of the heavy-vehicle or the experience of the 
driver. For instance, many heavy-vehicles are not equipped with 

models will be discussed separately, followed by a comparison of 
the two models and results from the parameter transferability test.

Discussion

Weekday Injury Severity Model
Referring to Table 3, a total of 24 variables were found to be statisti-
cally significant contributing factors. Of the 24 variables, four were 
found to have statistically significant estimated random parameters 
based on the significance of the standard deviation. Although 
several distributions were tested, only the normal distribution was 

Table 4. Best Fit Mixed Logit Estimations for Weekend Crashes

Variable Coefficient t-statistic Marginal Effects

No Injury Minor Injury Severe Injury

No Injury
Constant 3.84 10.94

Accident Type (1 if Overturn/Rollover, 0 Otherwise) -0.87 -3.67 -0.0095 0.0072 0.0024

Location (1 if Four-Legged Intersection, 0 Otherwise) -0.34 -2.16 -0.0095 0.0078 0.0017

Lighting (1 if Daylight, 0 Otherwise) 0.30 2.17 0.0271 -0.0204 -0.0068

Weather (1 if Snow, 0 Otherwise) -0.37 -1.87 -0.0069 0.0055 0.0014

Minor Injury*

Constant 2.17 6.21

Posted Speed Limit (1 if 70 mi/hr, 0 Otherwise) -0.36 -0.44 -0.012 -0.0012 0.0132

   (Standard Deviation of Normally Distributed Parameter) (2.93) (1.72)

Accident Type (1 if Collision With Parked Vehicle, 0 Otherwise) -1.22 -3.89 0.006 -0.0062 0.0001

Location (1 if Intersection-Related, 0 Otherwise) -0.51 -1.60 0.0026 -0.0027 0.0001

Surface Condition (1 if Dry, 0 Otherwise) 0.46 2.91 -0.026 0.0275 -0.0016

Heavy Vehicle Type (1 if Truck-Tractor With Semitrailer, 0 Otherwise) -1.02 -1.18 -0.0275 0.029 -0.0016

   (Standard Deviation of Normally Distributed Parameter) (2.95) (2.19)

Severe Injury*

Posted Speed Limit (1 if 55 mi/hr, 0 Otherwise) 1.32 5.91 -0.0215 -0.0043 0.0258

Vehicles Involved (1 if Greater Than 2 Vehicles, 0 Otherwise) 0.66 2.02 -0.0028 -0.0004 0.0032

Accident Type (1 if Collision With a Vehicle in Transport, 0 Otherwise) 0.94 3.56 -0.0206 -0.0036 0.0242

Traffic Control Device (1 if Traffic Signal, 0 Otherwise) -1.36 -2.55 0.0018 0.0004 -0.0022

Lighting (1 if Dark With Street Lights On, 0 Otherwise) -1.06 -2.40 0.0021 0.0004 -0.0025

Weather (1 if Clear, 0 Otherwise) 0.59 2.41 -0.0104 -0.002 0.0124

Surface Condition (1 if Wet, 0 Otherwise) 0.64 1.93 -0.0027 -0.0004 0.0031

Restraint Used (1 if Lap and Shoulder Belt, 0 Otherwise) -0.64 -2.52

Model Statistics

Number of Observations 2,441

Restricted Log-Likelihood -2,681.71

Log-Likelihood at Convergence -1,519.36

McFadden Pseudo R2 0.43
*Minor Injury (non-incapacitating injuries and possible/evident injuries); Severe Injury (incapacitating injuries and fatalities)
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crashes where illegal or unsafe speed was a contributing factor, and 
crashes in which the drivers were male, respectively. In regard to no 
injury, crashes that occurred at traffic signals have a 0.011 increase 
in no injury probability according to marginal effects. A possible 
explanation for this finding may be attributed to the speeds at which 
crashes occur at traffic signals (i.e., low speeds are apt to result in less 
severe injuries). As for crashes where illegal or unsafe safe speed was 
a contributing factor, marginal effects show a 0.196 higher probability 
of sustaining a minor injury. This finding is intuitive, as higher speed 
impacts generally lead to more severe injuries. Lastly, marginal effects 
indicate that crashes where the driver was male have a 0.038 higher 
probability of resulting in a severe injury. This finding is in-line with 
previous work and generally attributed to males being overrepre-
sented in incapacitating and fatal injuries.18,30

Weekend Injury Severity Model
Referring to Table 4, a total of 17 variables were found to be statis-
tically significant contributing injury severity factors. Of the 17 
variables, just two had randomly estimated parameters based on the 
statistical significance of the standard deviation. The first random 
parameter was the estimated parameter for crashes that occurred 
where the posted speed limit was equal to 70 miles per hour in the 
minor injury severity function. With a mean of -0.36 and standard 
deviation of 2.93, the normal distribution curve implies that 45.1 
percent of heavy-vehicle crashes that occurred where the posted speed 
limit was equal to 70 miles per hour are more likely to sustain a minor 
injury, whereas 54.9 percent are less likely. The varying effect across 
observations might be attributed to congestion. That is, a proportion 
of the crashes may have occurred during congested conditions where 
speeds are much lower, while other crashes happened under free flow 
conditions. The heterogeneous effects may also be a result of road 
surface conditions, age, and gender, where high speed limits impact 
injury severity outcomes of each group differently.28

Tantamount to the weekday injury severity model, the second 
random parameter for the weekend injury severity model was 
the estimated parameter for truck-tractors with a semitrailer in 
the minor injury severity function. A mean of -1.02 and standard 
deviation of 2.95 suggest that 36.5 percent of truck-tractors with 
a semitrailer are more likely to sustain a minor injury, yet 63.5 
percent are less likely. In addition to being heterogeneous, this was 
the largest impact variable on minor injury outcomes. Based on 
marginal effects, there is a 0.029 increase in probability of sustaining 
a minor injury. Truck-tractors with trailers have shown to increase 
the likelihood of sustaining injuries in former studies, but unlike the 
current study, found that the indicator was homogenous across crash 
observations.4,6,31As discussed previously, the varying effects may be 
attributed to the vehicles’ safety devices and experience of the driver.

In regard to high impact factors, crashes that occurred during 
daylight and posted speed limits equal to 55 miles per hour have the 

airbags, therefore the likelihood of sustaining a minor injury for 
a proportion of heavy-vehicles may be expected. This is also seen 
through the marginal effects, as marginal effects show a 0.022 
higher probability of sustaining a minor injury.

The second random parameter was the estimated parameter 
for heavy-vehicle crashes that occurred during daylight in the 
minor injury severity function. With a mean of -0.71 and standard 
deviation of 1.62, the estimated parameter mean is greater than 
zero for 33.1 percent of heavy-vehicles and less than zero for 66.9 
percent. Although visibility is greater under daylight conditions, 
it may entice a proportion of drivers to make risky maneuvers that 
increase their likelihood of sustaining a minor injury if a crash 
occurs. On the other hand, daylight can provide adequate visibility 
for a proportion of drivers to avoid more serious crashes (e.g., an 
experienced driver may be able to avoid a more severe crash if 
there is adequate visibility, but this is not represented in the crash 
data). Daylight was also found to have a heterogeneous effect on 
injury severity in previous work.27,28 In terms of the impact of such 
crashes, marginal effects indicate a 0.006 increase in minor injury 
probability if a crash occurs during daylight.

The third random parameter was the estimated parameter for 
heavy-vehicle crashes that occurred during dark conditions with no 
street lights in the severe injury severity function. A mean of -5.23 
and standard deviation of 5.60 indicate that 17.5 percent of heavy-ve-
hicles are more likely to sustain a severe injury if a crash occurs in 
the dark with no street lights, while 82.5 percent of heavy-vehicles 
are less likely. A possible explanation for the varying effects of 
this factor may be attributed to a driver’s visual acuity in the dark, 
such as drivers that are required to wear prescription glasses when 
driving at night. Kim et al. (2010) also found this lighting condition 
to be heterogeneous across observations for severe injury outcomes. 
In addition, this factor was found to be one of the more impactful 
factors in regard to severe injuries being that marginal effects show a 
0.003 increase in probability of sustaining a severe injury.

The fourth, and final, random parameter for weekday crashes 
was the estimated parameter for drivers more than 60 years of age 
in the severe injury severity function. With a mean of -0.11 and 
standard deviation of 1.30, the normal distribution curve indicates 
that 46.6 percent of heavy-vehicle drivers over the age of 60 are 
more likely to sustain a severe injury and 53.4 percent are less likely. 
The non-homogenous nature of this factor may be attributed to 
driver experience or driver physiology. For instance, older drivers 
are likely to have a substantial amount of experience and may be 
able to mitigate the severity of crashes. However, at the same time, 
the physiology of elderly drivers could result in more severe injuries 
if a crash occurs (e.g., differences in bone mass, physical fitness, 
etc.) when compared to younger drivers. 

Factors with the largest impact on no injury, minor injury, and 
severe injury outcomes include crashes that occurred at traffic signals, 
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a mixed logit modeling framework was applied to account for the 
unobserved heterogeneity often present in crash data and to prevent 
biased and inaccurate inferences. Further, a parameter transferabil-
ity test was conducted to determine if heavy-vehicle injury severity 
analyses need to be done by time-of-week.

In addition to the difference in contributing factors between 
severity models, the parameter transferability test resulted in a 
rejection of the null hypothesis that weekend and weekday crashes 
need to be modeled holistically with a high level of confidence 
(i.e., heavy-vehicle crashes by time-of-week need to considered 
separately for safety analyses). For instance, specific times of day 
were found to impact injury severity on weekdays, but no times 
were found to impact severity on weekends. This may prompt 
Minnesota to further research regarding off-hour delivery times 
during weekdays. Stop signs increase the likelihood of severe 
injuries on weekdays, therefore an economically viable solution to 
reduce severity could be to effectively place stop signs along freight 
routes that are prone to high weekday volumes. Likewise, surface 
conditions impact injury severity conditional on time-of-week. Dry 
surface conditions increase the likelihood of a severe injury during 
the week and increase the likelihood of a minor injury during the 
weekend, while wet surfaces increase the likelihood of a severe 
injury on weekends. A possible solution may include implementing 
work-zone-type signage in high risk areas, or a flashing yellow 
light that changes from weekdays to weekends to caution drivers. 
Lastly, different speed limits were found to increase severe injury 
likelihood by weekdays and weekends. Therefore, warning sings in 
terms of speed, or heavy-vehicle speed studies, can be implemented 
to mitigate the severity of heavy-vehicle crashes by time-of-week.

The authors further suggest that crash data continue to be 
disaggregated to produce safety analyses, results, and corresponding 
recommendations with more precision depending on need. This may 
include crashes by lighting condition, heavy-vehicle type, or weather. 
In doing so, federal and state agencies can better direct their funding 
and resources in terms of transportation safety. In addition, the 
“heterogeneity” method and parameter transferability test presented 
in this work can have promising results if implemented by state and 
federal agencies. For instance, in general, current methods consist of 
crash frequency analyses that do not account for data heterogeneity 
and data is not disaggregated to better understand why specific 
crashes occur and their contributing factors. 

In summary, heavy-vehicle crashes by time-of-week need to 
be considered separately for future safety analyses (e.g., frequency 
studies, crash rate studies, etc.). In addition, the use of “raw” crash 
data is recommended to confirm the results presented in this study. In 
other words, the data used for this study is extensively filtered before 
it reaches researchers and does not include the variety of variables 
that state-specific crash data has (e.g., Texas, Washington State).

largest impact on no injury and severe injury outcomes, respec-
tively. For crashes that occurred during daylight, there is a 0.027 
increase in no injury probability according to marginal effects. As 
formerly discussed, this may be attributed to increased visibility 
that allows drivers to avoid potential hazards and mitigate crash 
severity (e.g., vehicles crossing the median into on-coming traffic, 
vehicles running through intersections, animals crossing the road, 
etc.). For crashes that occurred along roadway segments with a 
posted speed limit equal to 55 miles per hour, marginal effects show 
a 0.026 higher probability of sustaining a severe injury. Again, as 
described earlier, higher speeds are likely to result in more severe 
crashes and is illustrated here through marginal effects.

Parameter Transferability
From Eq. (6), it was determined that parameter estimates are 
statistically different from weekdays to weekends. That is to say, 
the null hypothesis that weekday and weekend crashes need to 
modeled holistically was rejected; these crashes need to be analyzed 
separately. Table 5 shows that heavy-vehicle injury severity analyses 
for weekday and weekend crashes need to done independently with 
well over 99 percent confidence.  

In addition to the parameter transferability test, the difference 
in factors that affect injury outcomes by time of week further 
illustrate the need to analyze such crashes separately. If a contrib-
uting factor was shared between the two models, it was significant 
for a different severity. For example, collisions with a parked vehicle 
was significant in the minor injury severity function for weekend 
crashes, but significant in the severe injury severity function 
for weekday crashes. The same is true for crashes that occurred 
during daylight, in which there was significance in the no injury 
severity function for weekend crashes and significance in the minor 
injury severity function for weekday crashes. The only factor to be 
significant in the same severity function was truck-tractors with a 
semitrailer, and was also found to be heterogeneous in both injury 
severity models. Overall, the injury severity contributing factors are 
significantly different by time-of-week.

Table 5. Chi-Square Statistics and Degrees of Freedom for Parameter 
Transferability Test

M X1 M X2

Weekday Weekend

Weekday 0 22,768 (22)

Weekend 146,445 (16) 0

Summary and Recommendations
The current study investigated heavy-vehicle driver injury severity 
by time-of-week in an attempt to fill the noticeable gap in literature 
regarding heavy-vehicle injury severity studies. To accomplish this, 
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